Supplementary Information: Soiled adhesive pads shear clean by slipping—A robust self-cleaning mechanism in climbing beetles Guillermo J. Amador¹, Thomas Endlein¹, Metin Sitti¹,* ¹Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany *Correspondence to: sitti@is.mpg.de May 23, 2017 | | Glass $(N = 9)$ | Dock leaf $(N = 20)$ | |--------------------------------------|-----------------|----------------------| | Contact angle (water) [deg] | 8.1 ± 1.0 | 49 ± 9.7 | | Contact angle (diiodo-methane) [deg] | 49 ± 1.5 | 56 ± 5.0 | | Surface free energy [mN/m] | 74 ± 1.4 | 54 ± 9.0 | | Disperse part [mN/m] | 35 ± 0.8 | 31 ± 2.6 | | Polar part [mN/m] | 39 ± 0.6 | 23 ± 6.4 | Table S1: Contact angle and surface free energy measurements for glass and dock leaf substrates. Figure S1: Comparison of unrestrained (data of present study) and restrained (Clemente et al, 2010 [1]) climbing beetles. (a-c) Number of microbeads removed per step by climbing beetles onto a glass surface for (a) 1- μ m, (b) 10- μ m, and (c) 45- μ m polystyrene beads. Exponential fits are tabulated in Table S2. $N_p = ae^{bN_S}$ | | Bead size | Coefficient a | 95% confidence bounds | Coefficient b | 95% confidence bounds | \mathbb{R}^2 | Source | |--------------|-----------|---------------|-----------------------|---------------|-----------------------|----------------|-----------------------| | Unrestrained | 1 μm | 9949 | (2887, 17010) | -0.3309 | (-0.6141, -0.04766) | 0.6019 | Here | | | 10 μm | 77.78 | (55.5, 100.1) | -0.1213 | (-0.1857, -0.05685) | 0.734 | Here | | | 45 μm | 18.27 | (10.32, 26.23) | -0.2052 | (-0.3309, -0.0796) | 0.7215 | Here | | Restrained | 1 μm | 8909 | (6934, 10880) | -0.3283 | (-0.4185, -0.2381) | 0.9509 | Clemente et al (2010) | | | 10 μm | 269 | (87.91, 450) | -1.09 | (-1.656, -0.5241) | 0.927 | Clemente et al (2010) | | | 45 μm | 10.77 | (8.115, 13.43) | -0.5669 | (-0.7126, -0.4211) | 0.9734 | Clemente et al (2010) | Table S2: Exponential fits for number of beads removed per step for unrestrained and restrained beetles. Restrained data is taken by curve fitting results from Clemente and coauthors [1]. ## References [1] Clemente, C. J., Bullock, J. M., Beale, A. & Federle, W. Evidence for self-cleaning in fluid-based smooth and hairy adhesive systems of insects. *Journal of Experimental Biology* **213**, 635–642 (2010).